半导体产业面临的挑战日益严峻,我们该如何应对?如果把晶体管比作粮食,我们可以参考解决粮食危机的方法,来说明应对芯片挑战的三种思路。第一,最直接的就是继续提升主要粮食的单位面积产量,这对应于提高芯片中晶体管的密度,这被称为“延续摩尔”(MoreMoore)。第二,是扩展其他粮食种类,提高丰富程度,这意味着除了CPU、内存等数字芯片之外,还要大力拓展模拟、射频、电源、显示、柔性芯片等的用途,以及通过3D芯片将各种功能集成在一起,这叫作“扩展摩尔”(MorethanMoore)。第三,也是最长远的,是开发全新的粮食品种,这对应于探索MOS场效晶体管以外的新型晶体管,例如碳纳米管场效晶体管(简称CNTFET或CNFET)、阻变式存储器(简称RRAM)、相变随机存取存储器(简称PCRAM)、隧穿场效晶体管(简称TFET)等,这条路径叫作“超越摩尔”(BeyondMoore)。《芯片简史》作者:汪波出版社:湛庐文化/浙江教育出版社“延续摩尔”半导体业界继续缩小晶体管尺寸,提高芯片里晶体管的密度,是“延续摩尔”路径的主要目标。当工艺节点从5纳米进到3纳米和2纳米时,FinFET遇到了一个老问题,晶体管无法有效关断,漏电流飙升导致发热严重。尽管FinFET已经变成了立体结构,可通过凸起的三个侧面去关断导电沟道,但仍无法完全关断。年,研究人员提出了更大胆的“纳米线”(Nano-wire)结构。在这种结构中,晶体管的导电沟道变成纳米粗细的一根“线”,完全被一个环形的“栅”给全方位地环绕,就好像一只“手”握着橡皮水管。在“手”上施加电压,能更好地关闭晶体管,减小漏电流。虽然这种结构解决了晶体管关断的问题,但也对晶体管开启后通过的电流大小造成了影响:细细的纳米线对电流的阻碍作用极大。为此,年法国原子能委员会电子与信息技术实验室(CEA-Leti)的研究人员提出纳米片(Nano-sheet)结构。这类晶体管又叫GAAFET(见图14-3)。在这种结构中,连接晶体管开关两侧的不再是细细的“线”,而是薄而宽的“片”,这样全包围的结构更利于关断晶体管,而多个薄而宽的片又提升了导电能力。年,IBM公司展示了这种堆叠的纳米片晶体管。年5月,IBM公司采用纳米片成功突破2纳米技术节点,在一个指甲盖大小的芯片上集成了亿个晶体管。图14-3晶体管结构的演变IRDS预测围栅晶体管将用于3纳米、2纳米及以下的技术节点。三星公司准备在3纳米技术节点时切入围栅晶体管,而台积电公司准备在2纳米技术节点时迁移过来。在随后的1纳米和0.7纳米技术节点,单个晶体管的尺寸将再一次面对挑战。IRDS预测那时业界将把水平放置的围栅晶体管竖立起来,以进一步减小“占地面积”。再进一步,业界还可能将围栅晶体管堆叠起来,做成3D结构。芯片将通过堆叠的方式继续向上“生长”,就像一层层的空中花园,以便继续提高单位面积可以容纳的晶体管的数量。尽管有了好的晶体管结构设计,但能否将其制造出来则又是另外一回事。制造晶体管的最大瓶颈仍然是光刻机。光源为纳米的浸没式光刻机可以加工的最小栅间距约为34纳米。要知道,纳米的紫外光(经过水折射后变成纳米)本身无法用来加工这么小的尺寸,它需要经过多次曝光,分次加工线条的不同边缘,才能达到所需的精度。然而,加工尺寸越小,紫外光进行多重曝光所需的掩膜版数量也就越多,到了7纳米技术节点就需要几十层掩膜版。掩膜版越多,加工步骤越多,所花费的成本和时间也就越多。10纳米工艺制造的晶圆比14纳米工艺制造的晶圆贵了32%,而在7纳米的技术节点又比10纳米贵了14%。如果到5纳米技术节点时再不采用下一代EUV光刻机,光刻所需的步骤将达到多步。EUV光刻机(见图14-4)的光源波长是13.5纳米,仅为浸没式光刻机的1/10,是解决这一问题的希望。然而,EUV光刻机的问世时间却一次次地推迟。早在年,半导体业界的几家公司就联合起来启动了EUV光刻机的工业化进程。阿斯麦尔公司于年交付了一台光刻胶的扫描样机,但之后却卡在了激光光源这一障碍上,波长13.5纳米的EUV光太难产生了。直到年,美国加州的西盟半导体设备公司(Cymer)提出了一种产生极紫外激光的方法。阿斯麦尔公司的一位光刻专家阿尔贝托·皮拉提(AlbertoPirati)评论说:“我第一次听到这个主意的时候,觉得它很疯狂。”这个主意是将金属锡高温熔化,把极其细微的液滴均匀地喷洒在一个空腔里,然后用大功率二氧化碳激光器发出一束强光,以每秒5万次的频闪照射这些液滴,并将其转变为类似太阳中的等离子体,从而激发出13.5纳米的EUV。图14-4EUV光刻机原理示意图然而,这种方法的效率却异常低下,激光器需要20千瓦功率的输入(可为台冰箱供电),却只能得到11瓦(相当于一盏LED台灯的功率)输出,远小于光刻所需的瓦,其余99.%的能量都变成热量耗散掉了。不得已,西盟半导体设备公司找到了一个变通方法:用一束低功率的先导激光照射滴液颗粒,将其“压扁”成薄饼形状,增大受光面积,接着再用高功率激光照射,以激发出更多的EUV光。年,输出的光源功率提高到了55瓦,年达到了瓦。年终于达到了实际工作所需的瓦。尽管EUV光源有了,但新的问题又冒了出来。EUV光无法在空气中传播,因为这么短波长的光会被空气吸收掉。为此,机器内部的光传播路径和晶圆加工台所在区域要抽真空。更麻烦的是,玻璃透镜也会吸收EUV光,人们不得不放弃使用了几十年的透镜,改用反射镜。然而,普通的反射镜也会吸收EUV光。为此,阿斯麦尔公司发明了一种特殊的镜子,表面交替涂有硅和钼的薄层,每层只有几纳米厚。利用两种材料不同折射系数的布拉格效应,每个交界面处都可以反射一部分EUV光。EUV光在到达晶圆台前要经过12个反射镜,每次反射损失30%,最后只有约1%的光线能照射到晶圆片上。本来瓦的光源,照到晶圆上只剩下2瓦。如此微弱的光线需要光刻胶极其敏感,但高灵敏度的光刻胶又会引起加工精度的波动……技术难题层出不穷,解决完一个,又冒出一个。经过多次延迟,阿斯麦尔公司最终克服了难以想象的困难,制造出了人类历史上最精密的光刻机,每台成本高达2亿美元。年,阿斯麦尔公司开始向客户交付EUV光刻机。每台机器的部件需要4架波音飞机运送。运抵晶圆厂后,那里会有准备就绪的上百名工程师,他们负责安装和调试。光刻机占地约80平方米,其中激光部分占了20平方米。整个机器像一座冰山,因为大量管道和线缆埋在地下10米深处,然后才是露出地面的部分。年,经过17年的研发,EUV光刻机终于开始用于5纳米节点的工艺制造。它在未来面临着新的挑战。1纳米及以下的技术节点需要更高的分辨率。这时,就需要高“数值孔径”的EUV光刻机,而后者所需的光源功率还要再翻一倍,达到瓦才行。然而,EUV光刻机很快也将达到极限。IRDS预计,年半节距将达到极限的8纳米(此外,尽管X光和电子束的波长比EUV更短,但是由于X光需要占地面积很大且昂贵的同步辐射源,而电子束的串行写入会导致效率低下,被认为不适合大规模芯片制造)。那将会是“悬崖边缘”,再往前就是量子力学的不确定性统治的世界了。当光刻精度达到极限后,晶体管尺寸将无法继续缩减。唯一有可能继续增加晶体管密度的方法,就是将多层芯片在垂直方向上堆叠,这就像是将一层平房变成高层楼房,以提高晶体管密度。实际上,在EUV光刻机之前的工艺上,人们制造成本敏感的存储器时就已经开始使用3D堆叠技术,这样就无须采用最先进的光刻机,也能很好地控制成本。目前,存储器已经实现了数百层的堆叠。除了以上困难,CPU性能提升也变得越来越缓慢。20世纪90年代,CPU性能每年可以提升52%,到了21世纪前十年每年只能提升23%,从到年,这个数值又下降了近一半,只有12.5%,而在年到年几乎停滞,只有3.5%。而且,CPU和存储器之间的“内存墙”也越来越难以逾越。冯·诺伊曼计算机要先从内存中调取数据,再送入CPU中计算。但是,CPU处理能力显著提高后,计算机从内存调取数据的速度并没有等比例提高,于是CPU和内存之间就形成了通道瓶颈。CPU很快将“腹”中的数据“消化完毕”,而新的数据却迟迟不能从内存“喂”过来,CPU不得不处于“饥饿”状态。据估计,计算机从内存将数据搬运过来的时间比CPU处理时间至少长10倍,CPU只能将宝贵的时间和资源浪费在等待上。造成CPU和内存之间存在“高墙”的原因有多方面,其中之一是CPU和内存的距离,它们位于不同的芯片,容易造成信号延迟。为了缩短这段距离,人们提出将CPU与内存封装在同一颗芯片内,分别放置在不同层,然后堆叠成一颗三维芯片,层与层之间通过硅通孔相连,以缩短信号传输距离。然而,即使CPU和内存在同一颗芯片内的不同部分,互连线上的时延也越来越严重。彻底解决“内存墙”问题的方法是改变CPU从内存中调取数据的方式,不再以计算单元为中心,而改为以存储为中心,发展计算、存储一体的“存内计算”。这种全新的计算机架构有可能改变“80岁高龄”的冯·诺伊曼计算机架构的统治地位。“扩展摩尔”随着“延续摩尔”遇到的障碍越来越大,人们开始寻找其他解决路径。5年,ITRS提出了“扩展摩尔”的概念。这条路径追求的不是缩小单个晶体管的尺寸,而是增加系统功能的多样性,在一个芯片上集成和实现丰富的功能。这条路径


转载请注明地址:http://www.wannianqinga.com/jwfss/11016.html